Abstract

This paper aims to explore the essence of facial attractiveness from the viewpoint of geometric features toward the classification and identification of attractive and unattractive individuals. We present a simple but useful feature extraction for facial beauty classification. Evaluation of facial attractiveness was performed with different combinations of geometric facial features using the deep learning method. In this method, we focus on the geometry of a face and use actual faces for our analysis. The proposed method has been tested on, image database containing 60 images of men's faces (attractive or unattractive) ranging from 20-50 years old. The images are taken from both frontal and lateral position. In the next step, principle components analysis (PCA) was applied to feature a reduction of beauty, and finally, the neural network was used for judging whether the obtained analysis of various faces is attractive or not. The results show that one of the indexes in identifying facial attractiveness base of science, is the values of the geometric features in the face, changing facial parameters can change the face from unattractive to attractive and vice versa. The experimental results are based on 60 facial images, high accuracy of 88%, and Sensitivity of 92% is obtained for 2-level classification (attractive or not).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.