Abstract
The study was conducted to investigate the biomass pyrolysis using mahogany wood as the feedstock. Chemically, mahogany wood contained complex biomass compounds, consisting of cellulose, hemicellulose, and lignin. Each biomass compound had its degradation at a certain temperature. Therefore, their compounds will be pyrolyzed at some different temperatures to understand the certain one. In the experiment, the biomass was hydrolyzed based on the temperature differences from room temperature to a temperature around 1000oC (1273 K). We identified pyrolysis kinetic rate and measured some appropriate pyrolysis temperatures to accomplish the pyrolysis process. Afterward, the investigation of its thermal degradation used Thermal Analysis and Thermogravimetric (TGA) analysis. It would be obtained the estimation of energy needed to obtain a mathematical equation determined by the dependencies of the pyrolysis temperature by using LINSEIS STA Platinum Series. The mathematical equation was gained by using the temperature difference profiles (differential thermal analysis-DTA) and the biomass weight loss (difference thermogravimetry-DTG) by means of TGA. It was measured under the inert condition without Oxygen at the heating rate of 400°C/h and 800°C/h. By using order-1 differential equations, the activation energy, and pre-exponential factors also were determined in the mathematical equation of the kinetic reaction rate equation as k 1 = 7.9033 for a heating rate of 400°C/h and k 2 = 9.7745 for heating rate 800°C/h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.