Abstract
Crayfish interneurons were identified that appear to be directly responsible for presynaptic inhibition of primary afferent synapses during crayfish escape behavior. The interneurons are fired by a polysynaptic pathway triggered by the giant escape command axons. When directly stimulated, these interneurons produce short-latency, chloride-dependent primary afferent depolarizations and presynaptically inhibit primary afferent input to mechanosensory interneurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.