Abstract

A sequence of quantum chemical computations of increasing accuracy was used in this work to identify molecules with small exciton reorganization energy (exciton-vibration coupling), of interest for light emitting devices and coherent exciton transport, starting from a set of ∼4500 known molecules. We validated an approximate computational approach based on single-point calculations of the force in the excited state, which was shown to be very efficient in identifying the most promising candidates. We showed that a simple descriptor based on the bond order could be used to find molecules with potentially small exciton reorganization energies without performing excited state calculations. A small set of chemically diverse molecules with a small exciton reorganization energy was analyzed in greater detail to identify common features leading to this property. Many such molecules display an A-B-A structure where the bonding/antibonding patterns in the fragments A are similar in HOMO and LUMO. Another group of molecules with small reorganization energy displays instead HOMO and LUMO with a strong nonbonding character.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call