Abstract

This paper proposes a novel hybrid learning algorithm with stable learning laws for Adaptive Network based Fuzzy Inference System (ANFIS) as a system identifier and studies the stability of this algorithm. The new hybrid learning algorithm is based on particle swarm optimization (PSO) for training the antecedent part and forgetting factor recursive least square (FFRLS) for training the conclusion part. Two famous training algorithms for ANFIS are the gradient descent (GD) to update antecedent part parameters and using GD or recursive least square (RLS) to update conclusion part parameters. Lyapunov stability theory is used to study the stability of the proposed algorithms. This paper, also studies the stability of PSO as an optimizer in training the identifier. Stable learning algorithms for the antecedent and consequent parts of fuzzy rules are proposed. Some constraints are obtained and simulation results are given to validate the results. It is shown that instability will not occur for the leaning rate and PSO factors in the presence of constraints. The learning rate can be calculated on-line and will provide an adaptive learning rate for the ANFIS structure. This new learning scheme employs adaptive learning rate that is determined by input–output data. Also, stable learning algorithms for two common methods are proposed based on Lyapunov stability theory and some constraints are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.