Abstract

Four impurities (Imp-I–IV) were detected using gradient HPLC method in few laboratory batches of acrivastine in the level of 0.03–0.12% and three impurities (Imp-I–III) were found to be known and one (Imp-IV) was unknown. In forced degradation study, the drug is degraded into four degradation products under oxidation and photolytic conditions. Two impurities (Imp-III and -IV) were concurred with process related impurities whereas Imp-V and -VI were identified as new degradation impurities. Based on LC-ESI/MSn study, the chemical structures of new impurities were presumed as 1-[(2E)-3-(4-methylphenyl)-3-{6-[(1E)-3-oxobut-1-en-1-yl]pyridin-2-yl}prop-2-en-1-yl]pyrrolidin-1-ium-1-olate (Imp-IV), 1-{[3-(4-methylphenyl)-3-{6-[(1E)-3-oxobut-1-en-1-yl]pyridin-2-yl}oxiran-2-yl]methyl}pyrrolidin-1-ium-1-olate (Imp-V) and 2-[2-(4-methylphenyl)-3-[(1-oxidopyrrolidin-1-ium-1-yl)methyl]oxiran-2-yl]-6-[(1E)-3-oxobut-1-en-1-yl]pyridin-1-ium-1-olate (Imp-VI), and confirmed by their synthesis followed by spectroscopic analysis, IR, NMR (1H, 13C) and mass. An efficient and selective high-performance liquid chromatography method has been developed and resolved well the drug related substances on a Phenomenex Gemini C-18 (250×4.6mm, particle size 5μm) column. The mobile phase was composed of sodium dihydrogen phosphate (10mM) and methanol, temperature at 25°C, and a PDA detector set at 254nm used for detection. The method was validated with respect to specificity, linearity, precision, accuracy, and sensitivity and satisfactory results were achieved. Identification, synthesis, characterization of impurities and method validation were first reported in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call