Abstract
Purple acid phosphatases (PAPs), a family of metallo-phosphoesterase enzymes, are involved in phosphorus nutrition in plants. In this study, we report that the tomato genome encodes 25 PAP members. Physio-biochemical analyses revealed relatively lower total root-associated acid phosphatase activity in the seedlings of Solanum pimpinellifolium than their cultivated tomato seedlings under Pi deficiency. Scrutiny of their transcript abundance shows that most of PAPs are activated, although to varying levels, under Pi deficiency in tomato. Further investigation demonstrates that the magnitude of induction of phosphate starvation inducible root-associated PAP homologs remains lower in the Pi-starved S. pimpinellifolium seedlings, hence, accounting for the lower acid phosphatase activity in this wild relative. Examination of their amino acid sequences revealed significant variation in their substrate-specificity defining residues. Among all members, only SlPAP15 possesses the critical lysine residue (R337) and atypical REKA motif in its C-terminal region. Homology modeling and docking studies revealed that ADP and ATP are preferred substrates of SlPAP15. We also identified other amino acid residues present in the vicinity of the active site, possibly facilitating such physical interactions. Altogether, the results presented here will help in the functional characterization of these genes in the tomato in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.