Abstract

Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation.

Highlights

  • Lentils are grown and consumed in many developing countries and are an important dietary staple because of their high protein content and nutrient density [1]

  • Large phenotypic variation was obtained among lentil recombinant inbred lines (RILs) in terms of Se accumulation in seed

  • The use of molecular markers for developing maps and other breeding applications has been limited in lentil by the low genetic variation at the species level and the lack of available marker resources

Read more

Summary

Introduction

Lentils are grown and consumed in many developing countries and are an important dietary staple because of their high protein content and nutrient density [1]. Se is an essential micronutrient for organisms and has beneficial effects on animal and human health [4], toxicity can occur with acute or chronic ingestion of excess Se [5]. Se is taken up from the soil by plants in two forms: inorganic (selenate and selenite) and organic (selenomethionine and selenocysteine) [6]. Both inorganic and organic forms can be good dietary sources of selenium for humans [6]. The recommended dietary allowance (RDA) of 55–200 μg of Se per day for adults is considered essential for healthy living [7]. The recommended daily intake of Se is 55μg in the US [7] and 60–75μg in the UK [8], and a single portion of cooked

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.