Abstract

In view of the need of automatic detection of weld defects, an automatic extraction and classification algorithm for welding defect features based on convolution neural network is proposed. The algorithm directly takes the preprocessed weld images as the input and the welding defect type as the output, effectively avoiding the adverse effect of artificial identification subjective experience on the detection results. The experimental results show that the welding defect identification technology based on convolution neural network has a good identification rate and can provide an important reference for the research of welding quality detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.