Abstract

Concern for public health entails the need to evaluate the degree of exposure of population to toxicants. To do this, robust high-throughput approaches are required to be able to perform a large number of analyses in cohort studies. In this study, a data-filtering procedure was applied to mass spectral data acquired by direct analysis of biological fluids leading to rapid detection of metabolites in a model xenobiotic system. Flow injection analysis (FIA) coupled to negative electrospray ionization (ESI)-LTQ Orbitrap Fourier transform mass spectrometry was used to directly analyze urine of rats treated with vinclozolin. Tandem mass spectrometry (MS/MS) experiments were subsequently performed for confirmation of a new metabolite structure. The isotope filtering based on the difference between accurate masses of (35)Cl and (37)Cl was applied to the raw data for the specific detection of ions containing at least one chlorine atom. Seven metabolites of vinclozolin were manually identified thanks to the characteristic isotope pattern of dichlorinated compounds. A new metabolite of vinclozolin was detected for the first time and identified as a sulfate conjugate. The application of an isotope-filtering procedure allowed the selective extraction of pertinent signals from the data. The processed mass spectrum was greatly simplified, significantly facilitating the detection of the seven metabolites previously identified. The use of FIA-HRMS in combination with dedicated bio-informatics data processing is shown to be an efficient approach for the rapid detection of metabolites in biological fluids. This is a very promising high-throughput approach for rapid characterization of the exposure status to xenobiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call