Abstract

Over the last decade, human population has been facing great challenges in ensuring appropriate supply of food free from cadmium (Cd) contamination. Selection of genetically low-Cd wheat (Triticum aestivum L.) genotypes, with a large biomass and high accumulation of Cd in straw but low-Cd concentration in grains, is an inventive approach of phytoremediation while keeping agricultural production in moderately contaminated soils. In this study, variations in Cd uptake and translocation among the 30 wheat genotypes in two different sites were investigated in field experiments. Significant differences in grain Cd concentration were observed between the two sites, with averaged values of 0.048 and 0.053mgkg-1 DW, respectively. Based on straw Cd accumulation, grain Cd concentration, and TFrs, Bainong207 and Aikang58 for site A and Huaimai23 and Yannong21 for site B are promising candidates of low-Cd genotypes, which have considerable potential in achieving phytoremediation while keeping agricultural production on moderately or slightly Cd-polluted soil. The results indicate that it is possible to select the optimal low-Cd genotypes of wheat for different soil types by taking consideration of the effect of soil-wheat genotype interaction on grain Cd concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.