Abstract
Two sets of intervarietal chromosome substitution lines in the recipient,susceptible cultivar ‘Chinese Spring’ were screened to identify the wheat chromosomes involved with antixenosis, antibiosis and tolerance resistance to greenbug and Russian wheat aphid. The amphiploid ‘Synthetic’ and the cultivar ‘Hope’ were the donor parents. Antixenosis, antibiosis and tolerance were evaluated with conventional tests in controlled environmental conditions using a clone of greenbug biotype C and a clone of RWA collected on wheat. Antixenosis against greenbug was accounted for by several chromosomes in both sets of substitution lines with chromosome 2B contributing the highest level of this type of resistance. The highest levels of antixenosis against RWA were associated with the group of chromosomes 7 of the substitutions CS/Syn set and the chromosome substitutions 2B, 6A and 7D of the CS/Hope set. Antibiosis against both aphids species was accounted for by several different chromosomes. The highest levels of antibiosis for most of RWA resistance traits were recorded from the 1B substitution line of the CS/Hope set. More than one gene appears to determine antibiosis. Tolerance to both greenbug and the RWA was significantly associated with chromosomes 1A,1D, and 6D in the CS/Syn set of substitutions. These lines showed enhanced plant growth under aphid infestation. The highest levels of antixenosis, antibiosis and tolerance against the two aphid species occurred mostly in different substitution lines. Consequently, the different types of resistance for both pests seem to be partially independent. Since different genes seem to be involved in at least several traits of the resistance categories against the two aphid species, such genes could be combined in new cultivars of wheat to broaden their genetic base of resistance against the greenbug and the RWA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.