Abstract

A novel approach using a combination of capillary electrophoresis/mass spectrometry (CE/MS) and off-line Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) revealed the structural details of acidic constituents of atmospheric organic aerosol. Both techniques utilized electrospray ionization (ESI), a soft ionization method, to facilitate the analysis of complex mixtures of organic compounds. CE/ESI-MS using an UltraTrol LN-precoated capillary and acidic background electrolytes at different pH values (2.5 and 4.7) was used to differentiate between weak (carboxylic) and strong (sulfonic) organic acids. On the basis of the electrophoretic mobility, m/z constraints from CE/ESI(-)-MS, and elemental composition information retrieved from off-line FTICR-MS, a variety of aliphatic and aromatic carboxylic acids (CHO-bearing molecules), nitrogen-containing carboxylic acids (CHON-bearing molecules), organosulfates (CHOS-bearing molecules), and (nitrooxy)organosulfates (CHONS-bearing molecules) were tentatively identified in the Oasis-HLB-extracted urban PM(2.5) (particulate matter with an aerodynamic diameter of <2.5 μm). The chemical known/unknown structures of detected compounds were confirmed by the semiempirical Offord model (effective mobility linearly correlated to Z/M(2/3)). The majorities of the identified compounds are products of atmospheric reactions and are known contributors to secondary organic aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.