Abstract

The paper presents a comparison between empirical and numerical quadratic transfer functions (QTFs) of the horizontal wave drift loads on the INO WINDMOOR floating wind turbine. The empirical QTFs are determined from cross bi-spectral analysis of model test data obtained in an ocean basin. Validation of the identified QTF is provided by comparing low frequency motions reconstructed from the empirical QTF with measurements. The numerical QTFs are calculated by a panel code that solves the wave-structure potential flow problem up to the second order. Systematic comparisons between numerical and empirical QTFs allows identification of tendencies of empirical QTFs and limitations of the second order potential flow predictions. The study is limited to hydrodynamic loads from waves only, i.e. without current. For small seastates, the results indicate that the second order potential flow predictions of the surge QTFs agree quite well with the wave drift coefficients identified empirically from the model test data. For moderate and high seastates, second order predictions underestimate the surge wave drift coefficients for all compared diagonals of the QTFs. The discrepancies between predictions and empirical coefficients are not small, especially at the lower frequency range (below around 0.10 Hz) where the potential flow wave drift forces tend to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.