Abstract

Monilinia spp. are among the main fungal pathogen affecting peaches, and they can cause severe pre- and postharvest losses. Development of smart packaging technologies (e.g., volatile indicators), facilitating infection detection and preventing other fruit from being contaminated, is still limited. In this study, we compared for the first time the aroma profile of whole healthy fresh peaches to Monilinia fructicola-artificially inoculated peaches, identifying discriminant volatile organic compounds (VOCs). More than one hundred VOCs were detected by applying head space solid-phase microextraction followed by GC-MS analysis. The level of methyl esters, hydrocarbons, lactones, and acids decreased in infected peaches indicating fruit aroma deterioration, while the concentration of ethyl esters and alcohols increased. In particular, the amount of ethanol and derived ethyl acetate reached a maximum of 24- and 20-fold increase in the infected peaches, respectively. Isobutanol, propyl acetate, and ethyl isovalerate were specifically emitted by M. fructicola-infected peaches. These compounds might serve as markers for the development of smart sensors allowing the detection of fungal infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.