Abstract
The hydrophilic vegetation from reservoir deltas sustains rapid expansions in surface and important increases in vegetal mass against a background of a significant influx of alluvium and nutrients from watercourses. It contributes to reservoir water quality degradation and reservoir silting due to organic residues. In this paper, we propose an evaluation method of two-dimensional and three-dimensional parameters (surfaces and volumes of vegetation), using the combined photogrammetric techniques from the UAS category. Raster and vector data—high-resolution orthophotoplan (2D), point cloud (pseudo-LIDAR) (3D), points that defined the topographic surface (DTM—Digital Terrain Model (3D) and DSM—Digital Surface Model (3D))—were the basis for the realization of grid products (a DTM and DSM, respectively). After the successive completion of the operations within the adopted workflow (data acquisition, processing, post-processing, and their integration into GIS), after the grid analysis, the two proposed variables (topics) of this research, respectively, the surface of vegetation and its volume, resulted. The data acquisition area (deriving grids with a centimeter resolution) under the conditions of some areas being inaccessible using classical topometric or bathymetric means (low depth, the presence of organic mud and aquatic vegetation, etc.) has an important role in the reservoirs’ depth dynamics and reservoir usage. After performing the calculations in the abovementioned direction, we arrived at results of practical and scientific interest: Cut Volume = 196,000.3 m3, Cut 2D Surface Area = 63,549 m2, Fill Volume = 16.59998 m3, Fill 2D Surface Area = 879.43 m2, Total Volume Between Surfaces = 196,016.9 m3. We specify that this approach does not aim to study the vegetation’s diversity but to determine its dimensional components (surface and volume), whose organic residues participate in mitigating the reservoir functions (water supply, hydropower production, flash flood attenuation capacity, etc.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.