Abstract
We propose a statistical identification procedure for recursive structural vector autoregressive (VAR) models that present a nonlinear dependence (at least) at the contemporaneous level. By applying and adapting results from the literature on causal discovery with continuous additive noise models, we show that, under certain conditions, a large class of structural VAR models is identifiable. We spell out these specific conditions and propose a scheme for the estimation of structural impulse response functions in a nonlinear setting. We assess the performance of this scheme in a simulation experiment. Finally, we apply it in a study on the effects of the macroeconomic shocks that propagate through the economy, allowing for asymmetry between responses from positive and negative impulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.