Abstract

AbstractThe Kolmogorov entropy (KE) algorithm was applied successfully to gas holdup fluctuations measured in a 0.102 m I.D. stainless steel bubble column equipped with a perforated plate distributor (19 holes ∅︁ 1 mm). Nitrogen was used as the gas, while both 1‐butanol and gasoline were used as liquids. 1‐Butanol was aerated at pressures, P = 0.1 and 0.5 MPa, whereas gasoline was aerated at P = 0.1 and 0.2 MPa. Based on the peaks in the KE values under the pressures examined in both liquids, the boundaries of the following five regimes were identified: bubbly flow, first transition, second transition, coalesced bubble (4‐region flow) and coalesced bubble (3‐region flow). As the pressure increases to P = 0.5 MPa in 1‐butanol, all four transition velocities shift to higher superficial gas velocity, uG. In addition, in gasoline at P = 0.2 MPa and uG ≤ 0.017 m s–1, the existence of a chain bubbling regime was detected, whereas in 1‐butanol at P = 0.5 MPa and uG ≤ 0.02 m s–1, both laminar and turbulent chain bubbling subregimes were identified. It was found that in 1‐butanol under ambient pressure, the second and fourth transition velocities occur earlier than in gasoline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.