Abstract

With rapid urbanization, urban functional zones have become important for rational government and resource allocation. Points of interest (POIs), as informative and open-access data, have been widely used in studies of urban functions. However, most existing studies have failed to address unevenly or sparsely distributed POIs. In addition, the spatial adjacency of analysis units has been ignored. Therefore, we propose a new method for identifying urban functional zones based on POI density and marginalized graph autoencoder (MGAE). First, kernel density analysis was utilized to obtain the POI density and spread the effects of POIs to the surroundings, which enhanced the data from unevenly or sparsely distributed POIs considering the barrier effects of main roads and rivers. Second, MGAE performed feature extraction in view of the spatial adjacency to integrate features from the POIs of the surrounding units. Finally, the k-means algorithm was used to cluster units into zones, and semantic recognition was applied to identify the function category of each zone. A case study of Changzhou indicates that this method achieved an overall accuracy of 90.33% with a kappa coefficient of 0.88, which constitutes considerable improvement over that of conventional methods and can improve the performance of urban function identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call