Abstract

The clinical application of GI endoscopy for the diagnosis of multiple diseases using artificial intelligence (AI) has been limited by its high false-positive rates. There is an unmet need to develop a GI endoscopy AI-assisted diagnosis system (GEADS) to improve diagnostic accuracy and clinical utility. In this retrospective, multicenter study, a convolutional neural network was trained to assess upper GI diseases based on 26,228 endoscopic images from Dazhou Central Hospital that were randomly assigned (3:1:1) to a training dataset, validation dataset, and test dataset, respectively. To validate the model, 6 external independent datasets comprising 51,372 images of upper GI diseases were collected. In addition, 1 prospective dataset comprising 27,975 images was collected. The performance of GEADS was compared with endoscopists with 2 professional degrees of expertise: expert and novice. Eight endoscopists were in the expert group with >5 years of experience, whereas 3 endoscopists were in the novice group with 1 to 5 years of experience. The GEADS model achieved an accuracy of .918 (95% confidence interval [CI], .914-.922), with an F1 score of .884 (95% CI, .879-.889), recall of .873 (95% CI, .868-.878), and precision of .890 (95% CI, .885-.895) in the internal validation dataset. In the external validation datasets and 1 prospective validation dataset, the diagnostic accuracy of the GEADS ranged from .841 (95% CI, .834-.848) to .949 (95% CI, .935-.963). With the help of the GEADS, the diagnosing accuracies of novice and expert endoscopists were significantly improved (P< .001). The AI system can assist endoscopists in improving the accuracy of diagnosing upper GI diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call