Abstract

The characterization of protein glycosylation can be a complex and time-consuming procedure, especially for prokaryote O-linked glycoproteins, which often comprise unusual oligosaccharide structures with no known glycosylation motif. In this report, we describe a "top-down" approach that provides information on the extent of glycosylation, the molecular masses, and the structure of oligosaccharide residues on bacterial flagella, important structural proteins involved in the motility of pathogenic bacteria. Flagella from four bacterial pathogens, namely, Campylobacter jejuni, Helicobacter pylori, Aeromonas caviae, and Listeria monocytogenes, were analyzed by this top-down mass spectrometry approach. The approach needs minimal sample preparation and can be performed within a few minutes compared to the tedious and often time-consuming "bottom-up" approach involving proteolytic digestion and LC-MS-MS analyses of the suspected glycopeptides. Multiply protonated protein precursor ions subjected to low-energy collisional activation in a quadrupole time-of-flight instrument showed extensive and specific gas-phase deglycosylation resulting in the formation of abundant oxonium ions with very few fragment ions from peptidic bond cleavages. Structural information on individual carbohydrate residues is obtained using a second-generation product ion scan of oxonium ions formed by collisional activation of the intact protein ions in the source region. The four bacterial flagella examined differed not only by the extent of glycosylation but also by the nature of carbohydrate substituents. For example, the flagellin from the Gram-positive bacterium, L. monocytogenes showed O-linked GlcNAc residues at up to 6 sites/protein monomer. In contrast, the three Gram-negative bacterial pathogens C. jejuni, H. pylori and A. caviae displayed up to 19 Ser/Thr O-linked sites modified with residues structurally related to N-acetylpseudaminic acid (Pse5Ac7Ac) and in the case of Campylobacter include a novel N-acetylglutamine substituent on Pse5Am7Ac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.