Abstract
The identification of unstable metabolites of ellagitannins having ortho-quinone structures or reactive carbonyl groups is important to clarify the biosynthesis and degradation of ellagitannins. Our previous studies on the degradation of vescalagin, a major ellagitannin of oak young leaves, suggested that the initial step of the degradation is regioselective oxidation to generate a putative quinone intermediate. However, this intermediate has not been identified yet. In this study, young leaves of Quercus dentata were extracted with 80% acetonitrile containing 1,2-phenylenediamine to trap unstable ortho-quinone metabolites, and subsequent chromatographic separation afforded a phenazine derivative of the elusive quinone intermediate of vescalagin. In addition, phenylenediamine adducts of liquidambin and dehydroascorbic acid were obtained, which is significant because liquidambin is a possible biogenetic precursor of C-glycosidic ellagitannins and ascorbic acid participates in the production of another C-glycosidic ellagitannin in matured oak leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.