Abstract

The molecular forms of estrogen receptor (ER) in estrogen-responsive mouse Leydig cell line (B-l) have been examined in relation to their biological activity. ER was predominantly recovered in the nuclear fraction upon homogenization even after cells were precultured in the absence of E 2 and Phenol Red. This unoccupied nuclear ER (ERn) whose hormone binding ability was extremely thermostable could be extracted with 0.4 M KC1. This stability enabled us to determine hydrodynamic parameters in the ligand-free condition. The Stokes radius and sedimentation constant of this ERn in high salt condition were 5.5 nm and 6.0S, respectively, resulting in its molecular weight of 140,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of ER labeled with [ 3H]tamoxifen aziridine gave a single band of 65,000 Da, indicating that this ERn had a oligomer structure similar to that of transformed nuclear ER complexed with estrogen in the putative target cells. Therefore, we further examined the possibility that this ERn in B-l cells can activate estrogen-responsive genes without any aid from estrogen. Estrogen responsive element-thymidine kinase promoter-chloramphenicol acetyltransferase fusion gene (ERE-tk-CAT) was transfected into B-1 cells. CAT activity was enhanced only in cells stimulated with estrogen. It may be concluded from these results that transformed ERn can be formed in the absence of estrogen but that binding to estrogen may be required in order to exert its biological activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.