Abstract

Raman spectroscopy is a common identification and analysis technique used in research and manufacturing industries. This study investigates the use of Raman spectroscopy and deep learning techniques for identifying various nanofabrication chemicals. Four solvents and SU-8 developer were identified inside common chemical storage and distribution containers. The containers attenuated the spectra and contributed varying amounts of background fluorescence, making manual identification difficult. Two varieties of SU-8 photoresist were differentiated inside amber glass jars, and cured samples of three ratios of polydimethylsiloxane (PDMS) were differentiated using Raman microscopy. The neural network accurately identified the nanofabrication chemicals 100% of the time, without additional preprocessing. This investigation demonstrates the use of Raman spectroscopy and neural networks for the identification of nanofabrication chemicals and makes recommendations for use in other challenging identification applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.