Abstract

The temporal and spatial characterization of unknown groundwater pollution sources remains an important problem in effective aquifer remediation and assessment of associated health risks. The characterization of contaminated source involves identifying spatially and temporally varying source locations, injection rates, and release periods. The proposed methodology exploits the universal function approximation capability of a feed forward multilayer artificial neural network (ANN) to identify the unknown pollution sources. The ANN is trained to identify source characteristics based on simulated contaminant concentration measurement data at specified observation locations in the aquifer. These concentrations are simulated for a large set of randomly generated pollution source fluxes. The back-propagation algorithm is used for training the ANN, with each corresponding set of source fluxes and resulting concentration measurement constituting a pattern for training the ANN. Performance of this methodology is evaluated for various data availability, measurement error, and source location scenarios. The developed ANNs are capable of identifying unknown groundwater pollution sources at multiple locations using erroneous measurement data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.