Abstract

Noncanonical NF-κB signaling through activation of the transcription factor RelB acts as key regulator of cell lineage determination and differentiation in various tissues including the immune system. To elucidate temporospatial aspects of Relb expression, we generated a BAC transgenic knock-in mouse expressing the fluorescent protein Katushka and the enzyme Cre recombinase under control of the murine Relb promoter (RelbCre-Kat mice). Co-expression of Katushka and Relb in fibroblast cultures and tissues of transgenic mice revealed highly specific reporter functions of the transgene. Crossing RelbCre-Kat mice with ROSA26R reporter mice that allow for Cre-mediated consecutive β-galactosidase or YFP synthesis identified various Relb expression domains in perinatal and mature mice. Besides thymus and spleen, highly specific expression patterns were found in different neuronal domains, as well as in other nonimmune organs including skin, skeletal structures and kidney. De novo Relb expression in the mature brain was confirmed in conditional knockout mice with neuro-ectodermal Relb deletion. Our results demonstrate the usability of RelbCre-Kat reporter mice for the detection of de novo and temporarily restricted Relb expression including cell and lineage tracing of Relb expressing cells. Relb expression during mouse embryogenesis and at adulthood suggests, beyond immunity, important functions of this transcription factor in neurodevelopment and CNS function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.