Abstract

AbstractThis study employs the Bayesian Markov Chain Monte Carlo (MCMC) method with the Metropolis–Hastings algorithm and maximum likelihood estimation (MLE) using a quadratic approximation of the likelihood function for the evaluation of uncertainties in low flow frequency analysis using a two‐parameter Weibull distribution. The two types of prior distributions, a non‐data‐based distribution and a data‐based distribution using regional information collected from neighbouring stations, are used to establish a posterior distribution. Eight case studies using the synthetic data with a sample size of 100, generated from two‐parameter Weibull distribution, are performed to compare with results of analysis using MLE and Bayesian MCMC. Also, Bayesian MCMC and MLE are applied to 36 years of gauged data to validate the efficiency of the developed scheme. These examples illustrate the advantages of Bayesian MCMC and the limitations of MLE based on a quadratic approximation. From the point of view of uncertainty analysis, Bayesian MCMC is more effective than MLE using a quadratic approximation when the sample size is small. In particular, Bayesian MCMC method is more attractive than MLE based on a quadratic approximation because the sample size of low flow at the site of interest is mostly not enough to perform the low flow frequency analysis. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call