Abstract
The general goal of security-constrained optimal power flow (SCOPF) problems is to optimize electricity network operation while ensuring that operational and planning decisions are consistent with technical limits under both pre- and post-contingency states. The solution of SCOPF problems is challenging because of the inherent size and scope of modern grids. As empirical evidence and longstanding operator experience show, relatively few of the constraints of SCOPF problems actually serve to enclose their feasible region. Hence, all those constraints not contributing directly to set up the SCOPF feasible space are superfluous and could be discarded. In light of this observation, this paper proposes an optimization-based approach for identifying so-called umbrella constraints in SCOPF problems where the network operation is approximated by the dc power flow. Umbrella constraints are constraints which are necessary and sufficient to the description of the feasible set of an SCOPF problem. The resulting umbrella constraint discovery problem (UCD) is a convex optimization problem with a linear objective function. For SCOPF problems of practical importance, the UCD is also quite large and requires the use of a decomposition technique. In this paper, we concentrate on an SCOPF formulation for preventive security generation dispatch. We show that by removing superfluous constraints, the resulting sizes of SCOPF problems are much smaller and can be solved significantly faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.