Abstract

The accurate and unambiguous detection of post-translational modifications in proteins and peptides remains a challenging task. We report here the use of cold ion spectroscopy for the identification of phosphorylated tyrosine residues in peptides. This approach employs the wavelength-specific UV fragmentation of cryogenically cooled protonated peptides in the gas phase. In addition to the appearance of specific photofragments, the phosphorylation of tyrosine induces large spectral shifts of the peptide electronic band origins. Quantum chemical calculations and experiments together suggest a certain generality of the use of such shifts in the spectroscopic identification of phosphotyrosines. The enhanced selectivity offered by the joint application of wavelength-specific fragmentation and mass spectrometry of cold molecules can also be used in the identifications of aromatic residues in protonated peptides and, potentially, of other UV-absorbing groups in a variety of large polyatomic ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.