Abstract

This study analyzed the complex interactions of intact spectrin with bovine brain membranes by evaluating membrane associations of defined regions of beta G spectrin, the subunit responsible for high affinity membrane binding. Two regions of beta G spectrin were expressed in bacteria and demonstrated to contain fully functional binding site(s) for a subset of spectrin-binding sites in brain membranes depleted of peripheral proteins. One region, located near the NH2 terminus, was comprised of 106-residue repeats and required repeats 2-7 for full activity. The other binding domain was located at the COOH terminus, which is the most variable between beta G and beta R spectrins, is distinct from the 106-residue repeats, and contains a pleckstrin homology domain. NH2-terminal beta spectrin polypeptides interacted with a membrane site(s) that recognized both brain and erythrocyte isoforms of spectrin, was inhibited by calcium/calmodulin, and was not blocked by the COOH-terminal polypeptide. The COOH-terminal region associated with a membrane site(s) that was specific for brain spectrin, was not inhibited by calcium/calmodulin, and was not blocked by the NH2-terminal polypeptide. These observations demonstrate membrane association of spectrin with at least two independent sites, which differ with regard to regulation by calcium/calmodulin and in selectivity for spectrin isoforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.