Abstract
Stress proteins such as metallothioneins (MTs) play a key role in cellular protection against environmental stressors. In nature, insects such as houseflies (Musca domestica) are commonly exposed to multiple stressors including heavy metals (e.g. Cadmium, Cd) and high temperatures. In this paper, we identify two novel MT genes from the cDNAs of M. domestica, MdMT1 and MdMT2, which putatively encode 40 and 42 amino acid residues respectively. Expression of the two MTs' mRNAs, which are examined in the fat body, gut, hemocyte, and the epidermis. From our study, we saw that the expression of MdMT1 and MdMT2 are enhanced by Cd and thermal stress. Levels of expression are highest at 10 mM Cd(2+) within a 24-h period, and expressions increase significantly with exposure to 10 mM Cd for 12h. Levels of the mRNAs are up-regulated after heat shock and that of MdMT2 reaches its maximum peak faster than MdMT1. Both of the MT genes might be involved in a transient systemic tolerance response to stressors and they may play important roles in heavy metal and high temperature tolerance in the housefly. To detect whether or not the MTs bind heavy metals, the target genes are cloned into the prokaryotic expression vector pET-DsbA to obtain fusion protein expressed in Escherichia coli BL21 (DE3). Recombinant DsbA-MdMT1 significantly increases tolerance of the host bacteria to Cd(2+), but DsbA-MdMT2 is absent. These differential characteristics will facilitate future investigations into the physiological functions of MTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.