Abstract

The CO-sensing mechanism of the transcription factor CooA from Rhodospirillum rubrum was studied through a systematic mutational analysis of potential heme ligands. Previous electron paramagnetic resonance (EPR) spectroscopic studies on wild-type CooA suggested that oxidized (FeIII) CooA contains a low-spin heme with a thiolate ligand, presumably a cysteine, bound to its heme iron. In the present report, electronic absorption and EPR analysis of various substitutions at Cys residues establish that Cys75 is a heme ligand in FeIII CooA. However, characterization of heme stability and electronic properties of purified C75S CooA suggest that Cys75 is not a ligand in FeII CooA. Mutational analysis of all CooA His residues showed that His77 is critical for CO-stimulated transcription. On the basis of findings that H77Y CooA is perturbed in its FeII electronic properties and is unable to bind DNA in a site-specific manner in response to CO, His77 appears to be an axial ligand to FeII CooA. These results imply a ligand switch from Cys75 to His77 upon reduction of CooA. In addition, an interaction has been identified between Cys75 and His77 in FeIII CooA that may be involved in the CO-sensing mechanism. Finally, His77 is necessary for the proper conformational change of CooA upon CO binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call