Abstract

Biomineralization of enamel is a complex process that involves the eventual replacement of an extracellular protein matrix by hydroxyapatite crystallites. To date four different enamel matrix proteins have been identified; the amelogenins, tuftelin, enamelin and ameloblastic Assembly of the enamel extracellular matrix from these component proteins is believed to be critical in producing a matrix competent to undergo mineral replacement. Enamel formation is a complex process and additional proteins are likely to have a role in the assembly of the extracellular matrix. In order to identify additional proteins involved in the assembly process, the yeast two-hybrid system developed by Fields and Song (1989) has been implemented. This system allows for the identification of unknown proteins that interact with proteins of interest. Typically a known protein is used as “bait” to screen a cDNA expression library of interest. In our studies, tuftelin or amelogenin have been used to screen a mouse tooth library produced from one day old pups. A library screening of six million clones with amelogenin as bait resulted in eleven positive clones all of which show high homology to the human leukocyte antigen-B (HLA-B) associated transcript (BAT) family of genes. A library screening of one million clones using tuftelin as the bait identified twenty-one tuftelin-interacting proteins. Ten of these proteins are either keratin K5 or keratin K6, four are constitutively expressed and the remaining seven are novel. Further characterization of the proteins shown to interact with amelogenin or tuftelin may shed additional light on this complex process of enamel matrix assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.