Abstract
Tubulin polyglutamylation is a reversible post-translational modification, serving important roles in microtubule (MT)-related processes. Polyglutamylases of the tubulin tyrosine ligase-like (TTLL) family add glutamate moieties to specific tubulin glutamate residues, whereas as yet unknown deglutamylases shorten polyglutamate chains. First we investigated regulatory machinery of tubulin glutamylation in MT-based sensory cilia of the roundworm Caenorhabditis elegans. We found that ciliary MTs were polyglutamylated by a process requiring ttll-4. Conversely, loss of ccpp-6 gene function, which encodes one of two cytosolic carboxypeptidases (CCPs), resulted in elevated levels of ciliary MT polyglutamylation. Consistent with a deglutamylase function for ccpp-6, overexpression of this gene in ciliated cells decreased polyglutamylation signals. Similarly, we confirmed that overexpression of murine CCP5, one of two sequence orthologs of nematode ccpp-6, caused a dramatic loss of MT polyglutamylation in cultured mammalian cells. Finally, using an in vitro assay for tubulin glutamylation, we found that recombinantly expressed Myc-tagged CCP5 exhibited deglutamylase biochemical activities. Together, these data from two evolutionarily divergent systems identify C. elegans CCPP-6 and its mammalian ortholog CCP5 as a tubulin deglutamylase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.