Abstract

BackgroundTo date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and also several other fungi.ResultsUsing label-free quantitative proteomics, we here investigate the telosome of Neurospora crassa, a fungus with canonical telomeric repeats. We show that at least six of the candidates detected in our screen are direct TTAGGG-repeat binding proteins. While three of the direct interactors (NCU03416 [ncTbf1], NCU01991 [ncTbf2] and NCU02182 [ncTay1]) feature the known myb/homeobox DNA interaction domain also found in the vertebrate telomeric factors, we additionally show that a zinc-finger protein (NCU07846) and two proteins without any annotated DNA-binding domain (NCU02644 and NCU05718) are also direct double-strand TTAGGG binders. We further find two single-strand binders (NCU02404 [ncGbp2] and NCU07735 [ncTcg1]).ConclusionBy quantitative label-free interactomics we identify TTAGGG-binding proteins in Neurospora crassa, suggesting candidates for telomeric factors that are supported by phylogenomic comparison with yeast species. Intriguingly, homologs in yeast species with degenerated telomeric repeats are also TTAGGG-binding proteins, e.g. in S. cerevisiae Tbf1 recognizes the TTAGGG motif found in its subtelomeres. However, there is also a subset of proteins that is not conserved. While a rudimentary core TTAGGG-recognition machinery may be conserved across yeast species, our data suggests Neurospora as an emerging model organism with unique features.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2158-0) contains supplementary material, which is available to authorized users.

Highlights

  • To date, telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and several other fungi

  • Linear chromosome ends of most eukaryotes consist of repetitive telomeric sequences that protect the integrity of the genome. This function is assisted by interacting proteins, generally referred to as the telosome, which are essential for functional telomeres [1]

  • A protein complex consisting of six core members (TRF1, TRF2, RAP1, TIN2, TPP1 and POT1) protects the TTAGGG-repeat telomeres from recognition by the DNA damage repair machinery [2, 3] with TRF1 and TRF2 being direct double-strand telomere binding proteins and POT1 binding the TTAGGG single-strand overhang

Read more

Summary

Introduction

Telomere research in fungi has mainly focused on Saccharomyces cerevisiae and Schizosaccharomyces pombe, despite the fact that both yeasts have degenerated telomeric repeats in contrast to the canonical TTAGGG motif found in vertebrates and several other fungi. Linear chromosome ends of most eukaryotes consist of repetitive telomeric sequences that protect the integrity of the genome. This function is assisted by interacting proteins, generally referred to as the telosome, which are essential for functional telomeres [1]. The telosomes of these two yeast model species differ greatly: In baker’s yeast, the degenerated double-strand repeats are recognized by Rap which interacts with Rif and Rif2 [5, 6], while in fission yeast the direct double-strand binding protein Taz1 [7] anchors a telomeric multi-protein complex consisting of Taz, Rap, Poz, Ccq, Tpz and Pot1 [1].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.