Abstract

At any time, each cell of the protozoan parasite Trypanosoma brucei expresses a single species of its major antigenic protein, the variant surface glycoprotein (VSG), from a repertoire of >2,000 VSG genes and pseudogenes. The potential to express different VSGs by transcription and recombination allows the parasite to escape the antibody-mediated host immune response, a mechanism known as antigenic variation. The active VSG is transcribed from a sub-telomeric polycistronic unit called the expression site (ES), whose promoter is 40–60 kb upstream of the VSG. While the mechanisms that initiate recombination remain unclear, the resolution phase of these reactions results in the recombinational replacement of the expressed VSG with a donor from one of three distinct chromosomal locations; sub-telomeric loci on the 11 essential chromosomes, on minichromosomes, or at telomere-distal loci. Depending on the type of recombinational replacement (single or double crossover, duplicative gene conversion, etc), several DNA-repair pathways have been thought to play a role. Here we show that VSG recombination relies on at least two distinct DNA-repair pathways, one of which requires RMI1-TOPO3α to suppress recombination and one that is dependent on RAD51 and RMI1. These genetic interactions suggest that both RAD51-dependent and RAD51-independent recombination pathways operate in antigenic switching and that trypanosomes differentially utilize recombination factors for VSG switching, depending on currently unknown parameters within the ES.

Highlights

  • Monoallelic expression of multigene families occurs in a variety of cellular processes, including mating-type switching in yeasts, immunoglobulin gene diversification in B-cell development, odorant receptors, and surface antigen variation in several pathogens [1,2,3,4,5,6,7]

  • Recombination-mediated variant surface glycoprotein (VSG) switching occurs preferentially by gene conversion (GC) rather than crossover [13,14,15,16], despite the fact that there are no clear advantages in switching through GC in vivo

  • We asked whether RAD51 is Extensive genetic and biochemical studies from yeasts have established the mechanisms of several key recombination pathways

Read more

Summary

Introduction

Monoallelic expression of multigene families occurs in a variety of cellular processes, including mating-type switching in yeasts, immunoglobulin gene diversification in B-cell development, odorant receptors, and surface antigen variation in several pathogens [1,2,3,4,5,6,7]. One ES can transcribe a VSG at any time and the rest are transcriptionally silent. Antigenic switching is caused mainly by switching the expressed VSG through DNA recombination. Recombination-mediated VSG switching occurs preferentially by gene conversion (GC) rather than crossover [13,14,15,16], despite the fact that there are no clear advantages in switching through GC in vivo

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call