Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Reliable and translational biomarkers are needed for early detection of DILI. microRNAs (miRNAs) have received wide attention as a novel class of potential DILI biomarkers. However, it is unclear how DILI drugs other than acetaminophen may influence miRNA expression or which miRNAs could serve as useful biomarkers in humans. We selected ketoconazole (KCZ), a classic hepatotoxin, to study miRNA biomarkers for DILI as a proof of concept for a workflow that integrated in vivo, in vitro, and bioinformatics analyses. We examined hepatic miRNA expression in KCZ-treated rats at multiple doses and durations using miRNA-sequencing and correlated our results with conventional DILI biomarkers such as liver histology. Significant dysregulation of rno-miR-34a-5p, rno-miR-331-3p, rno-miR-15b-3p, and rno-miR-676 was associated with cytoplasmic vacuolization, a phenotype in rat livers with KCZ-induced injury, which preceded the elevation of serum liver transaminases (ALT and AST). Between rats and humans, miR-34a-5p, miR-331-3p, and miR-15b-3p were evolutionarily conserved with identical sequences, whereas miR-676 showed 73% sequence similarity. Using quantitative PCR, we found that the levels of hsa-miR-34a-5p, hsa-miR-331-3p, and hsa-miR-15b-3p were significantly elevated in the culture media of HepaRG cells treated with 100 µM KCZ (a concentration that induced cytotoxicity). Additionally, we computationally characterized the miRNA candidates for their gene targeting, target functions, and miRNA/target evolutionary conservation. In conclusion, we identified miR-34a-5p, miR-331-3p, and miR-15b-3p as translational biomarker candidates for early detection of KCZ-induced liver injury with a workflow applicable to computational toxicology studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Toxicological sciences : an official journal of the Society of Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.