Abstract

This paper presents an extension of the phase correlation image alignment method to N-dimensional data sets. By the Fourier shift theorem, the motion model for translational shifts between N-dimensional images can be represented as a rank-one tensor. Through use of a high-order singular value decomposition, the phase correlation between two N-dimensional data sets can be decomposed to independently identify translational displacements along each dimension with subpixel resolution. Using three-dimensional MRI data sets, we demonstrate the effectiveness of this approach relative to other N-dimensional image registration methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.