Abstract

The knowledge of translation start sites is crucial for annotation of genes in bacterial genomes. However, systematic mapping of start codons in bacterial genes has mainly relied on predictions based on protein conservation and mRNA sequence features which, although useful, are not always accurate. We recently found that the pleuromutilin antibiotic retapamulin (RET) is a specific inhibitor of translation initiation that traps ribosomes specifically at start codons, and we used it in combination with ribosome profiling to map start codons in the Escherichia coli genome. This genome-wide strategy, that was named Ribo-RET, not only verifies the position of start codons in already annotated genes but also enables identification of previously unannotated open reading frames and reveals the presence of internal start sites within genes. Here, we provide a detailed Ribo-RET protocol for E. coli. Ribo-RET can be adapted for mapping the start codons of the protein-coding sequences in a variety of bacterial species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call