Abstract

Simple SummaryOesophageal adenocarcinoma (EAC) is a common type of oesophageal cancer with a rapidly rising incidence. Risk factors such as reflux, smoking, obesity and Barrett’s oesophagus cause chronic irritation and inflammation in the oesophagus. A receptor that causes inflammation, called Toll-like receptor 2 (TLR2), is expressed at higher levels in oesophageal cells from patients with Barrett’s and EAC, compared to disease-free patients. This study aimed to identify mechanisms involved in TLR2-mediated inflammation in oesophageal cells; and to assess whether TLR2 represents a therapeutic target to limit EAC development. Findings reveal that TLR2 activation in Barrett’s organoids and oesophageal cancer cells amplifies inflammation and promotes cancer development by causing the secretion of several inflammatory factors, most notably the nuclear protein, HMGB1. We demonstrate that TLR2 neutralisation efficiently blocks the inflammatory effects of TLR2 in these systems, revealing the therapeutic potential of TLR2 targeting to limit oesophageal disease and cancer progression.Chronic inflammation plays an important role in the pathogenesis of oesophageal adenocarcinoma (EAC) and its only known precursor, Barrett’s oesophagus (BE). Recent studies have shown that oesophageal TLR2 levels increase from normal epithelium towards EAC. TLR2 signalling is therefore likely to be important during EAC development and progression, which requires an inflammatory microenvironment. Here, we show that, in response to TLR2 stimulation, BE organoids and early-stage EAC cells secrete pro-inflammatory cytokines and chemokines which recruit macrophages to the tumour site. Factors secreted from TLR2-stimulated EAC cells are shown to subsequently activate TLR2 on naïve macrophages, priming them for inflammasome activation and inducing their differentiation to an M2/TAM-like phenotype. We identify the endogenous TLR2 ligand, HMGB1, as the factor secreted from EAC cells responsible for the observed TLR2-mediated effects on macrophages. Our results indicate that HMGB1 signalling between EAC cells and macrophages creates an inflammatory tumour microenvironment to facilitate EAC progression. In addition to identifying HMGB1 as a potential target for early-stage EAC treatment, our data suggest that blocking TLR2 signalling represents a mechanism to limit HMGB1 release, inflammatory cell infiltration and inflammation during EAC progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.