Abstract

Nitrogen fixation in legumes is an important agricultural trait that results from symbiosis between the root and rhizobia. To understand the molecular basis of nodulation, recent research has been focused on the identification of nodulation-related genes by functional analysis using two major model legumes, Medicago truncatula and Lotus japonicus. Thus far, three important processes have been discovered, namely Nod factor (NF) perception, NF signalling and autoregulation of nodulation. Nevertheless, application of the results of these studies is limited for non-model legume crops because a reference genome is unavailable. However, because the cost of whole-transcriptome analysis has dropped dramatically due to the Next generation sequencer (NGS) technology, minor crops for which reference sequences are yet to be constructed can still be studied at the genome level. In this study, we sequenced the leaf and root transcriptomes of Vigna angularis (accession IT213134) and de novo assembled. Our results demonstrate the feasibility of using the transcriptome assembly to effectively identify tissue-specific peptide clusters related to tissue-specific functions and species-specific nodulation-related genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call