Abstract

This paper presents an approach to the identification of time-varying, nonlinear pH processes based on the Wiener model structure. The algorithm produces an on-line estimate of the titration curve, where the shape of this static nonlinearity changes as a result of changes in the weak-species concentration and/or composition of the process feed stream. The identification method is based on the recursive least-squares algorithm, a frequency sampling filter model of the linear dynamics and a polynomial representation of the inverse static nonlinearity. A sinusoidal signal for the control reagent flow rate is used to generate the input–output data along with a method for automatically adjusting the input mean level to ensure that the titration curve is identified in the pH operating region of interest. Experimental results obtained from a pH process are presented to illustrate the performance of the proposed approach. An application of these results to a pH control problem is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.