Abstract
We present a new method for on-line identification of time-varying FIR channels. Two conditionally coupled estimators are proposed. In both cases an augmented-state adaptive Kalman filter is employed for tracking the time-varying channel and estimating the mean channel response. Coupled to the Kalman filter is an algorithm for estimating the parameters of the underlying auto-regressive (AR) model which describes the time evolution of the channel. For the first coupled estimator, we propose a new recursive least squares algorithm for estimation of these AR parameters directly from the channel observations. An alternative algorithm based on estimation of the channel covariance is used in the second coupled estimator. A simulation example demonstrates the performance of the proposed estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.