Abstract

We have examined the time variations of stretch reflex dynamics throughout rapid voluntary changes in the isometric contraction level of the human triceps surae muscles. This was achieved by superimposing a small stochastic displacement upon many such changing contractions and then identifying the time-varying relationship between the perturbation and the evoked electromyograms (EMGs). An "ensemble" time-varying system identification technique was used to estimate these input-output dynamics as a set of impulse response functions, one for each time before, during, and after the change in contraction level, with a temporal resolution equal to the data acquisition rate. Three main findings resulted. First, stretch reflex gain (relating joint velocity to EMG) was significantly modulated during changes in voluntary contraction level, increasing as the subject contracted the muscles and decreasing as the subject relaxed. Second, stretch reflex dynamics did not change with contraction level, even when its gain varied substantially. Third, the time course of the gain changes closely followed the level of the EMG, even though the subjects used rather different activation and deactivation patterns. These results suggest that, for the behavior studied (i.e., rapid changes in isometric contraction level), stretch reflex gain and motoneuron pool activation level were controlled by a common descending command rather than being independently specified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call