Abstract

Electronic Health Records (EHRs) are a significant source of big data used to track health variables over time. The analysis of EHR data can uncover medical markers or risk factors, aiding in the diagnosis and monitoring of diseases. We introduce a novel method for identifying markers with various temporal trend patterns, including monotonic and fluctuating trends, using machine learning models such as Long Short-Term Memory (LSTM). By applying our method to pneumonia patients in the intensive care unit using the MIMIC-III dataset, we identified markers exhibiting both monotonic and fluctuating trends. Specifically, monotonic markers such as red cell distribution width, urea nitrogen, creatinine, calcium, morphine sulfate, bicarbonate, sodium, troponin T, albumin, and prothrombin time were more frequently observed in the mortality group compared to the recovery group throughout the 10-day period before discharge. Conversely, fluctuating trend markers such as dextrose in sterile water, polystyrene sulfonate, free calcium, and glucose were more frequently observed in the mortality group as the discharge date approached. Our study presents a method for detecting time-series pattern markers in EHR data that respond differently according to disease progression. These markers can contribute to monitoring disease progression and enable stage-specific treatment, thereby advancing precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.