Abstract
The molluscan larval shell formation is a complicated process. There is evidence that the mantle of the primary larva (trochophore) contains functionally different cell populations with distinct gene expression profiles. However, it remains unclear how these cells are specified. In the present study, we identified three cell populations from the shell gland in earlier stages (gastrula) from the bivalve mollusc Crassostrea gigas. These cell populations were determined by analyzing the co-expression relationships among six potential shell formation (pSF) genes using two-color hybridization. The three cell populations, which we designated as SGCPs (shell gland cell populations), formed a concentric-circle pattern from outside to inside of the shell gland. SGCP I was located in the outer edge of the shell gland and the cells expressed pax2/5/8, gata2/3, and bmp2/4. SGCP II was located more internally and the cells expressed two engrailed genes. The last population, SGCP III, was located in the central region of the shell gland and the cells expressed lox4. Determination of the gene expression profiles of SGCPs would help trace their origins and fates and elucidate how these cell populations are specified. Moreover, potential roles of the SGCPs, e.g., development of sensory cells and shell biogenesis, are suggested. Our results reveal the internal organization of the embryonic shell gland at the molecular level and add to the knowledge of larval shell formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.