Abstract

Abstract There are several restrictions and limitations on the emissions and disposal of materials and pollutants related to wastewater treatment plants (WWTPs) emphasizing improvement of current processes and development of new methods. Process integration is one way to use all fractions of waste for improved efficiency. WWTPs produces sludge which is usually anaerobically digested to produce biogas and a byproduct called digestate. Digestate is an organic material that contains macro and micronutrients such as nitrogen, phosphorous, and potassium and also contains heavy metals. Digestate is mainly used for agricultural applications because of the presence of nutrients. However, digestate also contains energy in the form of carbon and hydrogen which can be harnessed through various processes and integrated with nitrogen recovery process. This study aims to recover the energy and nutrients from digestate through thermochemical treatment processes. Combustion, pyrolysis, and gasification are assessed and compared in this work. An ammonia stripping method is assumed to recover nitrogen from digestate. The thermochemical processes are heat integrated with ammonia stripping through modeling and simulation. Results show that almost half of the energy present in digested sludge is required for its drying. Moreover, nitrogen recovery also requires much energy. The combustion and gasification of digested sludge give better results than pyrolysis. The heat integration becomes feasible when the auxiliary biogas is also burned along with products from the thermochemical treatment of sludge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call