Abstract
Ethnopharmacological relevanceTraditional Chinese medicine (TCM) theory believes that clearing heat and promoting dampness is the main treatment method for chronic gastritis. Coptis chinensis Franch. has the effects of clearing heat, detoxifying, and anti-inflammatory; Magnolia officinalis var. biloba can be used to treat abdominal pain, cough, and asthma. Coptis chinensis Franch. and Magnolia officinalis var. biloba can regulate the balance of intestinal microbiota and inhibit inflammatory reactions. AimThis study will verify the therapeutic effect of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis, and explore its mechanism through transcriptome sequencing. MethodsFirstly, a rat chronic gastritis model was established, and the anal temperature and body weight changes of the rats before and after modeling were observed. Next, H&E staining, TUNEL assay and ELISA assay were performed on rat gastric mucosal tissues. Subsequently, the key fractions of Coptis chinensis Franch. and Magnolia officinalis var. biloba were obtained by high performance liquid chromatography (HPLC), and a GES-1 cell inflammation model was constructed to select the optimal monomer. Finally, the mechanism of action of Coptis chinensis Franch. and Magnolia officinalis var. biloba was explored through RNA seq. ResultsCompared with the control group, the rats in the administered group were in better condition, with higher anal temperature, reduced inflammatory response in gastric mucosal tissue and reduced apoptosis. The optimal fraction Coptisine was subsequently determined by HPLC and GES-1 cell model. RNA-seq analysis revealed that DEG was significantly enriched in ribosomes, NF-κB signaling pathway, etc. The key genes TPT1 and RPL37 were subsequently obtained. ConclusionsThis study verified the therapeutic effects of Coptis chinensis Franch. and Magnolia officinalis var. biloba on chronic gastritis by in vivo and in vitro experiments in rats, identified Coptisine as the optimal component, and obtained two potential target genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.