Abstract
The atomic structure of the Si(111)-(5 × 2)-Au surface, a periodic gold chain on the silicon surface, has been a long-debated issue in surface science. The recent three candidates, the so-called Erwin-Barke-Himpsel (EBH) model [S. C. Erwin, I. Barke, and F. J. Himpsel, Phys. Rev. B 80, 155409 (2009)], the Abukawa-Nishigaya (AN) model [T. Abukawa and Y. Nishigaya, Phys. Rev. Lett. 110, 036102 (2013)], and the Kwon-Kang (KK) model [S. G. Kwon and M. H. Kang, Phys. Rev. Lett. 113, 086101 (2014)] that has one additional Au atom than the EBH model are tested by surface x-ray diffraction data. A two-dimensional Patterson map constructed from the in-plane diffraction intensities rejects the AN model and prefers the KK model over the EBH model. On the basis of the arrangement of Au obtained from the Patterson map, all the reconstructed Si atoms, such as the so-called honeycomb chain structure, are directly imaged out by utilizing a holographic method. The KK model reproduces out-of-plane diffraction data as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.