Abstract

Avian liver mitochondrial hydroxymethylglutaryl-CoA synthase contains an active-site cysteine involved in forming the labile acetyl-S-enzyme intermediate. Identification of and assignment of function to this cysteine have been accomplished by use of an experimental strategy that relies upon generation and rapid purification of the S-acetylcysteine-containing active-site peptide under mildly acidic conditions that stabilize the thioester adduct. Automated Edman degradation techniques indicate the peptide's sequence to be Arg-Glu-Ser-Gly-Asn-Thr-Asp-Val-Glu-Gly-Ile-Asp-Thr-Thr-Asn-Ala-Cys-Tyr. The acetylated cysteine corresponds to position 129 in the sequence deduced from cDNA data for the hamster cytosolic enzyme [Gil, G., Goldstein, J.L., Slaughter, C.A., & Brown, M.S. (1986) J. Biol. Chem. 261, 3710-3716]. The acetyl-peptide sequence overlaps that reported for a tryptic peptide that contains a cysteine targeted by the affinity label 3-chloropropionyl-CoA [Miziorko, H. M., & Behnke, C. E. (1985) J. Biol. Chem. 260, 13513-13516]. Thus, availability of these structural data allows unambiguous assignment of the acetylation site on the protein as well as a refinement of the mechanism explaining the previously observed affinity labeling of the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.